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Abstract

The sensitivity study on a double-sensor conductivity probe for the measurement of local interfacial
area concentration, has been carried out by considering the e�ects of bubble lateral motions and probe
spacing. The measurable value was rigorously related to the local bubble interface velocity in the surface
normal direction, and the probability density function of each individual variable was identi®ed with
proper coordinate transform. Three theoretical calibration factors were de®ned to bridge the mean
measurable parameter to the interfacial area concentrations carried by the missed bubbles, measured
bubbles and their combination. These calibration factors were obtained through numerical method. The
results indicate that the total calibration factor is the best choice for practical applications, whereas the
other two factors bring in profound understandings of the measuring mechanisms. With the probe
spacing varying from about 36±86% of the mean bubble diameter, the total calibration factor is only
determined by the bubble velocity ¯uctuation, almost independent of the probe spacing. The analysis
also suggests that the missed bubbles contribute larger interfacial area concentration to the measuring
point than that obtained from the measured bubbles. Moreover, for better statistic behaviors, the
appropriate sample size was provided using a Monte Carlo approach. # 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Interfacial area concentration in two-phase ¯ow is de®ned as the total interface area per unit
mixture volume. In the two-¯uid model (Vernier and Delhaye, 1968; Ishii, 1975; Boure, 1978),
this parameter speci®es the geometric capability of the interfacial mass, momentum and energy
transfers, because these interfacial transfers between the two-phases are basically proportional
to the available interface area. Therefore, the knowledge of interfacial area concentration is
indispensable in the two-¯uid model. However, most of the available experimental data are
limited to volume or line averaged values over a section of a ¯ow channel (Veteau and
Charlot, 1981; Landau, 1977). Recently, double-sensor and four-sensor conductivity probes
were developed to measure the local time-averaged interfacial area concentration by Kataoka
et al. (1986). For the double-sensor probe, they took into account the lateral movements of the
measured bubbles and obtained a theoretical calibration factor smaller than that without
considering the lateral bubble velocity components (Herringe and Davis, 1976). According to
Kataoka et al. (1986), the measured parameters can be transformed to the interfacial area
concentration carried by the detected bubbles, whereas the interfacial area concentration
carried by the missed bubbles is recovered as if they possess the measured average value. Later
in 1994, they furthered the study on the e�ects of the probe-tip separation using a Monte
Carlo approach, and concluded that the probe spacing had little e�ect on the proposed
calibration factor, if the probe spacing was smaller than 1/5 of the measured bubble diameter
(Kataoka et al., 1994).
In this study, both the bubble lateral velocity components and the probe spacing are

considered to rigorously derive the theoretical calibration factor for the measurement of local
interfacial area concentration, by means of the double-sensor conductivity probe technique.
The basic assumptions in this study are isotropic bubble velocity ¯uctuations and spherical
bubble shapes. The assumption of isotropic bubble velocity ¯uctuation is due to the
consideration that the irregular bubble motion is mainly cased by turbulent eddies in the
continuous medium. The motions of these eddies are approximately isotropic with a ®rst-order
accuracy. For some other practical bubble velocity distributions, however, the proposed
method in this study is still valid by simply replacing the isotropic probability density
distribution function. On the other hand, the hypothesis on the bubble sphericity is much more
restrictive, which limits the proposed analysis for only ®nely dispersed bubbly ¯ow. Further
studies are needed for the measurement of non-spherical bubbles. For distorted or cap bubbles,
the bubble±probe interactions as well as the unpredictable surface normal directions make the
measurement virtually impossible. In such a situation, a four-sensor probe technique was
proposed to depict the actual velocity direction of an interface (Leung, 1996). However,
because of the large physical size of the four-sensor probe, this method in its present stage is
not applicable for small bubbles.
With these assumptions, the in¯uences of the bubble lateral motion and the ®nite probe

spacing on the measurement are examined in Section 2, and the mechanisms responsible for
the missing bubble phenomena in the measurement are clearly identi®ed. Thereafter, three
theoretical calibration factors are proposed to bridge the mean measurable parameter to the
local interfacial area concentrations carried by the measured bubbles, the missed bubbles and
their combination. To obtain these calibration factors, certain averaging operations are
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performed with the probability density function of each individual variable obtained from
appropriate coordinate transformation. Owing to the di�culty in analytical solutions,
numerical approach is employed to study the theoretical calibration factors with respect to the
variations of the bubble velocity ¯uctuation and the probe spacing. In Section 3, detailed
analyses of the numerical results indicate that the total calibration factor is the best choice for
practical applications. This factor is a function of the bubble velocity ¯uctuation, almost
independent of the probe spacing, if the bubble diameter varies from 1.2 to 2.8 times the probe
spacing. Di�erent from the result of Kataoka et al. (1986), this factor is larger than that
without considering the lateral components of the bubble velocity ¯uctuation. The analysis also
suggests that the missed bubbles carry larger interfacial area concentration than that carried by
the measured bubbles. Hence, the conventional method for the recovery of the missed bubbles
may cause signi®cant uncertainty. In Section 3, a method is also provided to determine the
relative bubble velocity ¯uctuation in terms of the measured values from a ®nite sample base.
Moreover, for reasonable statistic behavior, the necessary sample size is evaluated using a
Monte Carlo approach.

2. Principle of measurement and theoretical calibration

According to Ishii (1975), the de®nition of the local interfacial area concentration is given
by:

�a t � 1

DT

X
j

�
1

jVi � nij
�
j

, �1�

where the index j denotes the jth interface that passes the point of interest during a time
interval, DT, of time averaging. Vi and ni refer to the local bubble interface velocity and
surface normal vector, respectively. For a local measurement technique, it is thus necessary to
quantify the interface velocity in the surface normal direction, either directly or indirectly.
The double-sensor conductivity probe made at Purdue University is designed with two thin

electrodes, as shown schematically in Fig. 1. The tip of each electrode exposes a two-phase
mixture, and measures the impedance between the probe tip and the common ground. Owing
to the large di�erence in conductivity between liquid phase and the gas bubbles, the impedance
signal rises sharply when a bubble passes through the probe. As the diameter of the probe tips
is very small (89 mm in diameter), no signi®cant bubble deformation or fragmentation is
observed through ¯ow visualization for the studied bubble size range between 2 and 4 mm
(Leung 1996), and thus the time delay, Dt, of the two impedance signals, can be utilized to
characterize the time-interval for the bubble surface traveling from the front probe tip to the
back tip. With a known separation of the two probe tips, de®ned as Ds, a measurable bubble
``velocity'', Vm=Ds/Dt, is obtained. In a real two-phase bubbly ¯ow, bubbles have variable
shapes and move in a complicated manner. It is extremely di�cult to ®nd the relation between
this measurable value and the interface velocity in the surface normal direction. However, if
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the bubbles have spherical shapes without size changes and do not alter their moving courses
between the two probe tips, the measurable value can be transformed to the average interface
velocity in the surface normal direction through certain statistic analyses. The hypothesis on
the bubble sphericity limits the technique for the applications to ®nely dispersed bubbly ¯ow.
For the measurement distorted or cap bubbles, the bubble±probe interactions, as well as the
unpredictable surface normal directions, make the measurement virtually impossible. In such a
situation, a four-sensor probe technique was proposed to depict the actual velocity direction of
an interface (Kataoka et al. 1986). However, because of the large physical size of the four-
sensor probe, this method in the present stage is not applicable for small bubbles.
First, let us consider a very simple case when the bubbles move in the direction parallel to

the probe orientation, and then identify the important parameters that need to be involved in
practical measurement. Under the restriction of unidirectional bubble movements, the
measurable value, Ds/Dt, is identical to the magnitude of the bubble velocity. From the
de®nition of [1], the local interfacial area concentration is given by:

�a t � 1

DT

X
j

1

jVi � nij
� �

j

� 1

DT

X
j

�
Dt

Ds cos y

�
j

, �2�

where y is the angle between the surface normal vector and the bubble velocity (in the z-
direction). Since there is no correlation between the velocity magnitude and the angle, if the
sample size is su�ciently large, the summation can be approximated by an integral weighted by

Fig. 1. Schematic diagram of double-sensor conductivity probe.
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a probability distribution function, P(y), in the following form:

�a t � 2

DT

X
j

�
Dt
Ds

�
j

�p=2
0

P�y�
cos y

dy � 2Nb

DT

�
Dt
Ds

��p=2
0

P�y�
cos y

dy; �3�

where, Nb is the number of measured bubbles, and the factor 2 is due to the two surfaces of each
spherical bubble that passes through the measuring point. The bar over the term, Dt/Ds, means
averaging of all the measured bubbles. For an equal probability distribution of the measuring
points over the z-directional projected bubble area, the probability density function of y is given
by:

P�y� � 2 sin y cos y; 0RyRp=2; �4�

and (3) is then deduced to:

a t � 2Nb

DT

�
Dt
Ds

��p=2
0

2 sin y dy � 4Nb

DT

�
Dt
Ds

�
: �5�

The integration equals 2, a calibration factor that relates the average Dt/Ds to the true
interfacial area concentration. This formula was widely utilized to obtain the local interfacial
area concentration when the bubble velocity ¯uctuation is negligible.
Once the bubble velocity ¯uctuation is considered, however, the lateral motions of a bubble

may cause complications in the measurement as shown in Fig. 2. Equation (5) then losses its
theoretical base and becomes questionable. In a normal situation de®ned in Fig. 2(a), both
probe tips penetrate in a bubble, with the impedance signal of the ®rst probe tip ahead of the
second tip. The measured ``velocity'', Vm=Ds/Dt, no longer equals the true bubble velocity,
and is strongly in¯uenced by both the bubble velocity orientation and the probe spacing
relative to the bubble size. Fig. 2(b) and (c) depict the missing bubble cases, where either the
second probe tip cannot touch the bubble with a ¯at signal output, or the signal from the ®rst
tip falls behind that of the second tip. A conventional way to handle these missed bubbles is to
treat them as if they possess the average measured interface velocity in the surface normal
direction for the normal case, Fig. 2(a). However, from Fig. 2(b) and (c) we can tell that the
missing bubble cases occur at the edge of the bubbles where the magnitude of the interface
velocity in the surface normal direction, vVi � niv, is small. Therefore, the average interfacial area
concentration of the missed bubbles at the measuring point is generally greater than that
obtained in the normal situation. In view of these complications, the bubble velocity
¯uctuation and the probe spacing should be considered, in order to rigorously bridge the
measurable value to the true local interfacial area concentration.
From the above discussion, the real local interfacial area concentration can be separated into

two parts:
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Fig. 2. E�ects of bubble velocity and probe spacing on the output signals. (a) Normal measurement; (b) missing
bubble; and (c) missing bubble.

�ai � 2Nb

DT

�
1

Vi�nV � ni�
�
total

� 2Nb

DT

�
Nb ÿNmiss

Nb

�
1

Vi�nV � ni�
�
normal

�Nmiss

Nb

�
1

Vi�nv � ni�
�
miss

�
, �6�

where nV is the unit vector of the bubble velocity Vi, and ni refers to the normal vector on the
bubble surface where the ®rst probe tip hits the bubble inwardly. Nmiss denotes the number of
the missed bubbles. In the experiment, Nmiss is readily obtained from the total number of the
bubbles sensed by the ®rst probe tip subtracting the number of the bubbles that give normal
signals to the second probe tip. The sample base for the average with subscript ``total'', comes
from all of the interfaces where the ®rst probe tip hits the bubbles inwardly, including the
normal and missing bubble cases, whereas the subscripts ``normal'' and ``miss'' refer to the
normal and missing bubble cases, respectively. Meanwhile, the parameter to be acquired in
experiments is the average Dt/Ds:�

1

Vm

�
normal

� 1

Nb ÿNmiss

X
j

�
Dt
Ds

�
j

: �7�

The sample base for this average comes from the normal case as demonstrated in Fig. 2(a),
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excluding the missing bubble cases described in Fig. 2(b) and (c), because no time delay, Dt,
for these abnormal cases can be obtained in the measurement.
In order to obtain the interfacial area concentration in terms of this measurable value, we

de®ne the following three theoretical calibration factors:

ftotal �
1

Vi�nV � ni�
� �

total

1

Vm

� �
normal

�8�

fnormal �

�
1

Vi�nV � ni�
�
normal�

1
Vm

�
normal

�9�

fmiss �

�
1

Vi�nV � ni�
�
miss�

1
Vm

�
normal

: �10�

These factors can be obtained theoretically through statistic approach. To do so, the
mathematical relation between Vi and Vm at each measuring point ought to be determined. For
a spherical bubble with diameter D, (A6) in the Appendix gives the necessary relationship
between the measured parameter, Vm, and the bubble velocity:

Vm

Vi
�
�2�k � nv� � g�ni � nV�� �

��������������������������������������������������������������������������������
�2�k � nV� � g�ni � n�V��2 ÿ 4�g�k � ni� � 1�

q
2�g�k � ni� � 1� �11�

where g is de®ned as D/Ds, and k is the unit vector in the z-direction parallel to the probe
orientation. The harmonic mean of the measured velocity is thus given by:�

1

Vm

�
normal

� 2�g�k � ni� � 1�
Vi

n
�2�k � nV� � g�ni � nV�� �

��������������������������������������������������������������������������������������
�2�k � nV� � g�ni � ni � nV��2 ÿ 4�g�k � ni� � 1�

p o
0@ 1A

normal

: �12�

For a su�ciently large sample base, this mean operation can be replaced by an integration
with appropriate probability density functions for the bubble velocity and the measuring
locations. Statistically, the bubble velocity, Vi, ¯uctuates around a mean velocity, �Vb, that
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points to the z-direction, Fig. 3(a):

Vi � �Vbk� V 0b � �Vb�k�Hn 0V�; �13�
with

n 0V � sin x cosji� sin x sinjj� cos xk; �14�
where, V 0b stands for the bubble velocity ¯uctuation, n 0V represents the unit vector in the
direction of the velocity ¯uctuation, and H refers to V 0b= �Vb. The polar angle x varies from 0 to
p and the azimuthal angle j from 0 to 2p. With the assumption of isotropic bubble velocity
¯uctuations, the distribution function of the angles is given by:

P�x;j� � 1

4p
sin x; x 2 �0;p�; j 2 �0; 2p�: �15�

The assumption of isotropic bubble velocity ¯uctuation is due to the consideration that the
irregular bubble motions are mainly driven by turbulent eddies in the continuous medium. The
motions of these eddies are approximately isotropic with a ®rst-order accuracy. For some other
practical bubble velocity distributions, however, the proposed method in this study is still valid,
by simply replacing the distribution function in (15). This hypothesis also implies that the
bubble motion does not change course between the two probe tips. It is believed that only the
eddies larger than the bubble size can cause signi®cant bubble motion. Since the probe tip
separation is designed smaller than the size of the bubbles to be measured, the bubble motion
can persist between the two probe tips.
For the probability density function of the surface normal vector, the derivation is not

straight forward. As shown in Fig. 3(b), the measuring points are uniformly distributed in the
bubble cross-sectional area perpendicular to the bubble velocity direction (the shaded area).
Owing to the tilted bubble velocity vector, this cross-sectional area does not always lie in the

Fig. 3. De®nitions of vectors and coordinate systems. (a) Velocity vectors; (b) possible probe locations; and (c)

surface normal in x 0y 0z 0 coordinates.
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xy-plane as assumed by Kataoka et al. (1986), and it is thus very di�cult to determine the
probability density functions of the directional angles in the xyz coordinates. However, if we
rotate the coordinate system to a x 0y 0z 0 system with its z 0-axis in the bubble velocity direction
as shown in Fig. 3(c), the surface normal vector at the point, where the ®rst probe tip hits the
interface inwardly, is given by:

n 0i � cos mk 0 � sin m cos ni 0 � sin m sin nj 0; �16�

and the probability density function of the polar angle m and the azimuthal angle n should
be:

P�m; n� � 1

p
sinm cosm; m 2 �0; p=2�; n 2 �0; 2p�: �17�

Being transformed back to the original xyz coordinates, this surface normal vector is given
by:

ni � A � n 0i; �18�
with

A �
1ÿ �1� cos a� cos2 j �1� cos a� sinj cosj sin a cosj
ÿ�1� cos a� sinj cosj �1� cos a� sin2 jÿ 1 ÿ sin a sinj

sin a cosj sin a sinj cos a

24 35; �19�

where A is a coordinate transform matrix, and a is the polar angle of the velocity vector in the
xyz coordinates, as de®ned in Fig. 3(a) and (c), which can be related to the relative velocity
¯uctuation, H, and the polar angle, x, of the velocity ¯uctuation:

sin a � H sin x�����������������������������������������������������
�1�H cos x�2 � �H sin x�2

q ; �20�

cos a � �1�H cos x������������������������������������������������������
�1�H cos x�2 � �H sin x�2

q ; �21�

For a ®xed relative velocity ¯uctuation, H, the surface normal vector in the original xyz
coordinate system is thus a function of x, j, m and n, whose probability density functions have
been determined in (15) and (17). Subsequently, the mean operations in (8)±(10) can be
performed in the following way to obtain the theoretical calibration factors.
The total harmonic mean of interfacial velocity in the surface normal direction:

�
1

Vi�nV � ni�
�
total

� 1

�Vb

�2p
0

�p
0

�p
2

0

�2p
0

sin x sin m cos m
4p2��k�Hn 0V� � A � n 0i�

dn dm dx dj �22�
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The harmonic mean of the measured velocity:

1

Vm

� �
normal

� 1
�Vb

�2p
0

�p
0

�p
2

0

�2p
0

G
sin x sin m cos m

4p2
dn dm dx dj�2p

0

�p
0

�p
2

0

�2p
0

c
sin x sin m cosm

4p2
dn dm dx dj

; �23�

where,

G �
�Vb=Vm Vmr0

0; Vm< 0 or D< 0,

(
�24�

c � 1; Vmr0

0; Vm< 0 or D< 0,

�
�25�

Vm � Vi
�2�1�Hk � n 0V� � g��k�Hn 0V� � A � n 0i�� �

����
D
p

2�g�k � A � n 0i� � 1�

( )
, �26�

D � �2�1�Hk � n 0V� � g��k�Hn 0V� � A � n 0i��2 ÿ 4�g�k � A � n 0i� � 1�: �27�

The harmonic mean of interfacial velocity in the surface normal direction for the normal
case:

Fig. 4. Missing bubble fraction versus Ds/D and V 0b= �Vb.
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Fig. 7. (a) f total versus Ds/D and V 0b= �Vb. (b) f total versus V
0
b=

�Vb with Ds/D between 0.36 and 0.86.

Fig. 5. fmiss versus Ds/D and V 0b= �Vb. Fig. 6. f normal versus Ds/D and V 0b= �Vb.

1

Vi�nV � ni�
� �

normal

� 1

�Vb

�2p
0

�p
0

�p
2

0

�2p
0

Qnormal
sin x sin m cosm

4p2
dn dm dx dj�2p

0

�p
0

�p
2

0

�2p
0

c
sin x sinm cos m

4p2
dn dm dx dj

, �28�
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where

Qnormal � ��k�Hn 0V� � A � n 0i�ÿ1 Vmr0

0, Vm< 0 or D< 0:

(
, �29�

The harmonic mean of interfacial velocity in the surface normal direction for missing
bubbles:

1

Vi�nV � ni�
� �

miss

� 1

�Vb

�2p
0

�p
0

�p
2

0

�2p
0

Qmiss
sin x sinm cosm

4p2
dn dm dx dj�2p

0

�p
0

�p
2

0

�2p
0

�1ÿ c� sin x sin m cos m
4p2

dn dm dx dj
, �30�

where

Qmiss � ��k�Hn 0V� � A � n 0i�ÿ1; 0;
Vm< 0 or D< 0

Vmr0
:

(
�31�

It is di�cult to analytically perform the integrations given in (22), (23), (28) and (30),
particulaly for the explicit speci®cation of the integration domain for the missing bubble cases.
Hence, numerical investigation is inevitable. From the numerical solutions, the theoretical
calibration factors, f total, f normal and fmiss can be obtained as functions of H and Ds/D. Based
on (6), these theoretical calibration factors should also satisfy:

Fig. 8. Relation between V 0b= �Vb and E, the standard deviation of 1/Vm.
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ftotal �
�
Nb ÿNmiss

Nb

�
fnormal �

�
Nmiss

Nb

�
fmiss: �32�

The missed bubble number fraction is given by:

�
Nmiss

Nb

�
�
�2p
0

�p
0

�p
2

0

�2p
0

�1ÿ c� sin x sinm cos m
4p2

dn dm dx dj: �33�

3. Results and discussions

The numerical integrations are conducted with x, j, m and n as the independent variables
over the speci®ed ranges. The results are summarized in Figs. 4±8, including the variations of
the missed bubble number fraction, f total, f normal and fmissing with respect to di�erent relative
bubble velocity ¯uctuations and probe tip separations.
In Fig. 4, the missed bubble fraction grows monotonously as Ds/D and V 0b= �Vb increase. If

the probe tip separation equals the measured bubble diameter with V 0b= �Vb equal to 0.5, the
missing bubble fraction reaches about 0.5. In other words, roughly 50% of the bubbles that
pass through the ®rst probe tip cannot give normal signals for the measurement of the local
interfacial area concentration. Even when the probe tip separation reduces to zero, a certain
number of bubbles are still missed if the bubble velocity has lateral components, because the
probe tip order is still in e�ect, resulting missing bubble cases as identi®ed in Fig. 2(c).
For the missed bubbles, the theoretical calibration factor, fmiss, is shown in Fig. 5 against

the relative probe tip separation. As expected, when both Ds/D and V 0b= �Vb are relatively small,
fmiss is very large. It implies that the harmonic mean of the missed interface velocities in the
surface normal direction is much larger than the mean value of Dt/Ds. This is because the
missed points are close to the region where the angle between the velocity direction and the
surface normal is close to p/2. As Ds/D and V 0b= �Vb become very large, the missed number
fraction increases, but the harmonic mean of the missed interface velocities in the surface
normal direction is closer to the overall average value. Hence, fmiss drops signi®cantly. In
experiments, the conventional way to recover the interfacial area concentration carried by the
missed bubbles at the measuring point, is to treat them as if they possess the average interface
velocity in the surface normal direction for the normal case. The variation of fmiss suggests that
this method is improper, due to the tremendous di�erence between the two values, particularly
when the missing bubble fraction is small.
For the bubbles that give normal signals as demonstrated in Fig. 2(a), the theoretical

calibration factor presents irregular responses to the variations of Ds/D and V 0b= �Vb as shown in
Fig. 6. If the velocity ¯uctuation is zero, f normal equals 2, which resembles the simpli®ed case
without missing bubbles as discussed in Section 2. The harmonic mean of the bubble interface
normal velocity is twice the average of Dt/Ds. However, when the bubble velocity ¯uctuation
increases slightly, V 0b= �Vb equals 0.1 for instance, Fig. 6 shows the theoretical calibration factor
becomes smaller than 2, and decreases monotonously as Ds/D increases within the studied
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range. The reason could have two folds. On the one hand, the harmonic mean of the bubble
velocity in the surface normal direction losses some large components carried by the missed
bubbles, resulting in smaller numerator in the expression of f normal. On the other hand, the
components of Dt/Ds also becomes smaller, due to the possible situations when the two probe
tips can poke the bubble surface almost simultaneously, if the probe-tip separation is smaller
than the bubble diameter. The resultant denominator in the expression of f normal decreases.
Combining these two factors together, when the velocity ¯uctuation is small, the numerator
drops faster than the denominator does as the probe-tip separation increases. Accordingly,
f normal shows a general decreasing trend. For larger bubble velocity ¯uctuation, V 0b= �Vb equals
0.5, for instance, the mechanism becomes the opposite, and f normal gradually increases as
shown in Fig. 6, though bonded by the value of 2. In practical applications, such a
complicated variation of f normal has little help in calibrating the double-sensor conductivity
probe. Even if it has to be done in this way, the information of fmiss and the missing bubble
fraction should be incorporated into the process, as presented in (32), which would complicate
the calibration procedure.
In spite of all the complexities in f normal and fmiss, the overall theoretical calibration factor,

f total, demonstrates some valuable characteristics for the practical calibration of a double-
sensor conductivity probe. As shown in Fig. 7(a), for ®xed bubble velocity ¯uctuation, f total is
almost constant in the range of Ds/D between 0.36 and 0.86. In other words, for ®xed probe
tip separation and bubble velocity ¯uctuation, the overall theoretical calibration factor keeps
constant with bubble size ranging from about 1.2Ds to 3Ds. This is rather important in most of
the experiments where bubbles have size distributions. By plotting f total against bubble velocity
¯uctuations, the two curves for Ds/D equal to 0.36 and 0.86, respectively, collapse to a single
line, and the relative di�erence is within 1.5%, Fig. 7(b). Fitting the curves gives the following
formula for the overall theoretical calibration factor:

Fig. 9. f total versus bubble number (V 0b= �Vb =0.2 and Ds/D=0.5).
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ftotal � 2�
�
V 0b
�Vb

�2:25

; D � 1:2Ds03Ds: �34�

Consequently, the local interfacial area concentration is given by:

�a t
i �

�
2Nb

DsDT

��
2�

�
V 0b
�Vb

�2:25�� P
j�Dtj�

Nb ÿNmiss

�
; D � 1:2Ds03Ds: �35�

Within the speci®ed bubble size range, this formula is valid regardless how many bubbles are
missed in the measurement, as long as the output signals of the probe are proper for bubble
identi®cation, and the sample size is su�ciently large. Moreover, it gives ¯exibility to the probe
spacing design. For a given mean size of the bubbles to be measured, the probe-tip separation
can be chosen around half of the mean bubble diameter. If the bubbles are assumed to be
spherical and the sample size is large enough, for bubble size varying from roughly 0.6±1.4 D,
the interfacial area concentration computed from (35) should be quite accurate, with a relative
error less than21.5%.
The remaining question is how to determine the relative bubble velocity ¯uctuation, namely

V 0b= �Vb. One way is to build a relationship between the bubble velocity ¯uctuation and the
relative standard deviation of the measured velocity, Vm, similar to the approach of Kataoka
et al. (1986). However, because the measured velocity may have very large values when the two
probe tips hit the bubble surface almost simultaneously with a very short time delay, the
standard deviation of the measured velocity can be very high and inaccurate, as long as the
®nite samples do contain such values in the measurement. To overcome this shortcoming, the
relative standard deviation of the inverse of the measured velocity is suggested here to
characterize the bubble velocity ¯uctuation. This relative standard deviation, E, is de®ned as:

E � s1=vm
�1=Vm� �

�����������������������������������
�1=Vm ÿ �1=Vm�2

q
�1=Vm�

�
������������������������������������������������
Nb

P
j�Dtj�2 ÿ �

P
j Dtj�2

q
P

j Dtj
; �36�

where all the averaging operations are performed in the normal measurement case with the
subscript ``normal'' dropped for simplicity. Similar to the harmonic mean of the measured
velocity, this relative standard deviation can be related to the relative bubble velocity
¯uctuation. For the probe-tip separations of 0.36D and 0.86D, the numerical solutions of E, the
relative standard deviation of 1/Vm , versus V 0b= �Vb is shown in Fig. 8, which satis®es the
following linear function with an error of210%.

E � s1=Vm

�1=Vm�
10:85

�
V 0b
Vb

�
; D � 1:2Ds03Ds: �37�

This error would cause 22% ¯uctuations in the theoretical total calibration factor, f total. It
should be mentioned that in the investigated ranges, the maximum modi®cation due to the
existence of the bubble lateral movements, is only about 10% higher than 2, a factor without
considering the e�ects of the bubble velocity ¯uctuation. According to Serizawa et al. (1975),
the bubble velocity ¯uctuation is usually less than 0.4, and, therefore, the modi®cation is even
smaller, less than 7%. This correction may be overwhelmed by the statistic ¯uctuations of the
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two-phase ¯ow. Even if the two-phase ¯ow is stable, the ®nite sample size in any experiment
would induce considerable ¯uctuations to the measured parameter. To evaluate the proper
sample size, a Monte Carlo scheme is developed using (22) and (23) to generate (1/V i) and (1/
Vm) with random angles of relevant probability distributions. The resultant total calibration
factor for V 0b= �Vb=0.2 and Ds/D=0.5, is presented in Fig. 9 against the sample size. As the
bubble number increases from 100 to 50,000, the statistic ¯uctuation of f total decreases
gradually from about 210% to 21.5%. Usually, for a bubbly ¯ow of 10% void fraction with
bubble sizes of 2±4 mm in diameter and a liquid super®cial velocity of about 1 m/s, 10,000
bubble samples would spend roughly 5 min, without taking account of the data processing
process. It is thus very time-consuming to reduce the inherent statistic ¯uctuation. For
practical applications, at least several thousands of bubbles need to be sampled, which would
result in a statistical error of 27%, about the same magnitude of the maximum modi®cation
from the bubble velocity ¯uctuations.
Other factors, such as the near-spherical bubble shape and the possible bubble±probe

interactions, may also contribute to the measurement error. Therefore, it would be fair to
conclude that the e�ects of the bubble velocity ¯uctuation and the probe-tip separation are
insigni®cant if the probe spacing is chosen roughly half of the mean diameter of the bubbles to
be measured. Nevertheless, the bubble velocity ¯uctuation causes a systematic shift of the total
calibration factor by (34). This investigation rigorously answered the question concerning the
in¯uences of the bubble lateral movement and the probe-tip separation.

4. Conclusions

Sensitivity studies on the measurement of the local time-averaged interfacial area
concentration using a double-sensor conductivity probe, was carried out by considering the
in¯uences of the bubble lateral motion and the probe spacing. The basic assumptions in the
analysis are isotropic bubble velocity ¯uctuations and spherical bubble shapes. Taking into
account the in¯uences of the bubble lateral movements and the ®nite probe spacing, the
measurement mechanisms were closely examined to explain the missing bubble phenomena that
occurred in data processing. Accordingly, three theoretical calibration factors were proposed to
bridge the mean measurable parameter to the local interfacial area concentrations carried by
the measured bubbles, the missed bubbles and their combination. To obtain these factors, the
measurable value, Ds/Dt, was rigorously related to the bubble velocity in the surface normal
direction, and the probability density function of each individual variable was identi®ed with a
proper coordinate transform. Numerical solutions of these theoretical calibration factors
indicate that only the total calibration factor has practical value for applications. With the
probe spacing ranging from 36 to 86% of the mean bubble diameter, the probe spacing has
little e�ect on the total calibration factor. An approximate formula for this factor was
provided with the relative bubble velocity ¯uctuation as the independent variable. Di�erent
from the result of Kataoka et al. (1986), the resultant local interfacial area concentration is
greater than that without considering the lateral bubble velocity components. However, the
modi®cation is less than 7% for the reported maximum bubble velocity ¯uctuation in dispersed
air±water bubbly ¯ow if the probe spacing is within the speci®ed range. To determine the
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bubble velocity ¯uctuation in terms of the measured values, an appropriate method was also
provided to avoid possible singularity problems due to the ®nite sample base. Moreover, for
reasonable statistic behaviors in measurements, the necessary sample size was suggested using a
Monte Carlo approach. Some other parameters, such as missing bubble number fraction and
the interfacial area concentration carried by the missed bubbles, were also included for better
understandings of the measurement mechanisms of a double-sensor conductivity probe.
Detailed analyses about the missing bubble cases suggest that the missed bubbles contribute
larger interfacial area concentration to the measuring point than the average value from the
measured bubbles. Hence, the conventional concept for the recovery of the missed bubbles may
cause uncertainty.
The present study assumes isotropic bubble velocity ¯uctuations and spherical bubble

shapes. For some other practical bubble velocity distributions, however, the proposed method
in this study is still valid by simply replacing the distribution function. On the other hand, the
hypothesis on the bubble sphericity greatly simpli®es the analysis, and further studies are
needed for the measurement of non-spherical bubbles. For distorted or cap bubbles, the
bubble-probe interactions, as well as the unpredictable surface normal directions, make the
measurement virtually impossible. In such a situation, a four-sensor probe technique was
proposed to depict the actual velocity direction of an interface (Kataoka et al. 1986).
Moreover, the experimental evaluations of the proposed theoretical calibration factor should
be performed by means of other measurement techniques, in order to estimate the possible
in¯uences of the basic assumptions.
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Appendix A

At the moment, when the ®rst probe tip hits a spherical bubble of diameter D, a rectangular
coordinate system is chosen with its origin at the center of the bubble and its z-axis parallel to
the probe orientation. In this coordinate system, the position on the bubble surface, where the
®rst probe tip is located, can be expressed as a vector r, which satis®es:

r � r �
�
D

2

�2

: �A1�

After a time interval Dt, the bubble center moves to a position ViDt with a velocity Vi, and
the bubble surface hits the second probe tip at (r+Ds k), which also satis®es the equation of
sphere:
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�r� Dskÿ ViDt� � �r� Dskÿ ViDt� �
�
D

2

�2

: �A2�

Subtracting (A1) from (A2) and dividing the resultant equation with Dt, we have:��
Ds
Dt

�
kÿ VinV

�
�
��

D

Ds

��
Ds
Dt

�
ni �

�
Ds
Dt

�
kÿ VinV

�
� 0; �A3�

where nV is the unit vector of the bubble velocity and ni is the surface normal vector (unit
vector of r). This equation can be further simpli®ed as:

Z2�gk � ni � 1� ÿ Z�2�k � nV� � g�n � nV�� � 1 � 0; �A4�
with:

Vm �
�
Ds
Dt

�
; Z �

�
Vm

Vi

�
and g �

�
D

Ds

�
: �A5�

Accordingly, Z, the ratio between the measurable ``velocity'' and the bubble velocity, can be
obtained by solving (A4):

Z � Vm

Vi
� 2�k � nV� � g�ni � nV�� �

�������������������������������������������������������������������������������
�2�k � nV� � g�ni � nV��2 ÿ 4�g�k � ni� � 1�

p
2�g�k � ni� � 1� : �A6�

Here, one root of Z is dropped, because it refers to the solution for the second probe tip to
hit the surface from the inside of the bubble. This equation gives the general relation between
the bubble velocity and the measurable velocity. When the bubble velocity ¯uctuation is
negligible, the velocity direction of each individual bubble follows the bulk liquid ¯ow. With
the probe aligned to the ¯ow direction, (A6) can be simpli®ed to:

Z � Vm

Vi
� 1: �A7�

This is exactly the ideal case we discussed in Section 2, with the measured velocity identical
to the bubble speed.
When the probe tip separation is small in comparison with the bubble diameter, DsWD,

(A6) can be readily reduced to:

Z � Vm

Vi
� nV � ni

k � ni : �A8�

This is exactly the same as the solution of Kataoka et al. (1986).
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